

Converting sludge into reusable water and biofuel

THE PROCESS – SUPER CONCENTRATE BIO-SOLIDS

The GGI proprietary process turns 97% liquid wastewater sludge into 20%-30% moisture with 70% to 80% combustible bio-solids. This process achieves the US EPA Part 503 approval – required pathogen vector reduction threshold (Subpart D Option 7)

Despite representing only about 1% of total wastewater flows, sludge handling accounts for up to 50% of total treatment plant operating and energy costs.

Market Summary

- Municipal wastewater sewage sludge treatment facilities (holding lagoon/tanks cleanouts);
- Agricultural manures & processing plant sludge (animal and vegetable)
- Aquaculture applications (fish pond solids removal)
- Industrial wastewater sludge
- Oil solids removal

Municipal Sewage Sludge

(Public) Harrisonville, MO

(Public) Clinton, MO

(Public) Independence, MO

Manures

(Private) Egg layer manure (Le Sueur, MN)

(Private) Hog manure (Monroe City, MO)

Vegetable & Meat Processing Sludge

Meat (St. Joseph, MO)

Vegetable (Faribault, MN)

Vegetable (Renville, MN)

Other Sludge

(Private) Landfill/Leachate (Shakopee, MN)

(Private) Paper (Cedar Rapids, IA)

THE SLUDGE DILEMMA

Ineffective Treatment

- Aging infrastructure and technology (polymer induced thickening process.......dewatering process with screw press/belt press/filter press/decanter/centrifuge......drying process using thermal energy......landfill).
- * High moisture content (average 70% moisture-30% solids....best result is 60-40) even after all the processes.

Non-compliance Liquid Discharge

• Post dewatering liquid is 4X higher in conductivity and will usually end up flowing into drains and water catchment areas.

High Treatment and Disposal Cost

- Traditionally sludge treatment is >50% of total cost of WWTP operating cost. This is just to mitigate 1% of total flow!
- Disposal cost for dewatered sludge in Asia is USD100 to USD1200 per ton (usually at 70%-80% moisture content).
- High logistic cost for transporting 70% to 80% liquid when the nutrients are actually in the solids for recycling or reuse.

Landfill Requirement

- Cost of landfill is high (from USD15 to USD70 per ton for normal waste) sludge can be 3X higher than this.
- Land is scarce and local government are introducing mandates on waste reduction to landfills.
- Sludge require special sanitary landfill treatment processes because of leaching.

Detrimental Environmental Impact

- Leaching into environment and affecting ground water.
- Sludge solids are high in contamination posing an immediate danger to human, plant and animals.
- Landfills for sludge are usually deemed unfit for agriculture use.

Current Solutions

Land/Crop Application

Mechanical (belt press/centrifuge dewatering)

Haulers (landfill and lagoons)

Incineration (heat & power generation)

OUR SOLUTION

The Technological Shift

Sludge is a RESOURCE

• Uncovering hidden energy within the sludge solids (activated sewage sludge usually has a calorific value between 1200 to 1500 kcal/kg, farm sludge will have higher calorific value ranging between 2000 to 4000 kcal/kg).

Innovative Treatment Process

- Single-pass real time separation of liquid-solids without any need for thickening process and polymers dosage.
- Separated bio-solids at 70% to 80% and liquid at 30% to 20% in one pass.
- Combustible bio-solids (with increased GCV)
- Flexible in-take points (EQ, O&G trap, Sludge tank)
- Resilient to pH, O&G, Temperature, high TS & VS
- Modular and tested design
- Mobile sludge treatment process
- Small footprint

Cost Savings on Treatment Process

- Minimized sludge treatment train to one process, thus saving on chemical coagulant, power, personnel and logistics cost compared to traditional sludge dewatering and disposal process.
- Savings on Capex and Opex when system is applied to EQ stage (secondary and sludge treatment no longer required).
- Huge savings on disposal cost.

Achievement on Zero-Discharge and Zero-Landfill

- Reusable liquid as utility or process water
- Bio-solids are used as high GCV alternative solid fuel (with lower GHG emissions).
- Alternative usage for bio-solids as soil enhancement fertilizer (only with agriculture sludge).

THE ZERO DISCHARGE PROCESS

Clean water back to ETP

Step 1 Identify intake point

Step 2 Slurry mix process

Step 3
Preparation process

Step 4
Separation process

Step 5 Cutting process

Combustible solids as boiler feed

CURRENT SOLUTION TYPICAL TREATMENT PROCESS

GGI SOLUTION - FIXED UNIT

GGI SLUDGE TREATMENT PROCESS

GGI SOLUTION - FIXED UNIT GGI EFFLUENT TREATMENT PROCESS

CURRENT SOLUTION TYPICAL SMALL TREATMENT PROCESS

SMALL EFFLUENT & SLUDGE TREATMENT PROCESS (PLANTS LESS THAN 10,000 PE)

Process Snapshots

Micro level

Macro level

GGI Process Flow

"FILTRATION" Micro Particle Range Macro Particle Range Ionic Range Molecular Range Macro Molecular 0.001 0.01 0.1 1000 1.0 100 Micrometers (Log Scale) 1000 Angstrom Units (Log Scale) Aprox.Molecular Weight (Sachcaride Type-No Scale) 100 1,000 11,000 20,000 500,000 100,000 Paint Pigment Human Hair Carbon Black Aqueous Salts Yeast Cells **Beach Sand** Pyrogen Asbestos Relative Bacteria Virus Mist Metal Ion Size of Granular Pollen Activated Common Lung Damaging Carbon Colliodal Silica Dust Materials Sugars Latex / Emulsion Albumin Protein Milled Flour Atomic Radii Tobacco Smoke Coal Dust **€** Scanning Electron Microscope ◀ Optical Microscope ◀ Visible To Eye Reverse Osmosis Particle Filtration Ultrafiltration **SEPARATION PROCESS** Nanofiltration Microfiltration

Test Result – Treatment of Leachate from landfill

Pathogen Reduction Vector Reached

EPA vector is 90% solids for unstabilized and 75% solids for stabilized biosolids for Class A (safe)

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Sample Number: 13-M2501

Paul Koenig Azztec 8362 Tamarack Village #119-310 Woodbury MN 55125 Report Date: 8/12/13

Work Order #: 81-874

Date Collected: 8/ 1/13

Date Received: 8/ 9/13

Sample Description: IF4(2) Sample Site: Discharge Cake

Sewage Sludge

PROXIMATE

ANALYTE	AS RECEIVED	DRY BASIS
Total Moisture Ash Total Sulfur Calorific Value BTU/lb	8.44 wt. % 16.94 wt. % 0.43 wt. % 5850 BTU/lb	18.50 wt. % 3,551 kcal/kg 0.47 wt. % 14.86 Mj/kg

MINNESOTA VALLEY TESTING LABORATORIES, INC.

1126 North Front St. ~ New Ulm, MN 56073 ~ 800-782-3557 ~ Fax 507-359-2890 2616 East Broadway Ave. ~ Bismarck, ND 58501 ~ 800-279-6885 ~ Fax 701-258-9724 1201 Lincoln Hwy. ~ Nevada, IA 50201 ~ 800-362-0855 ~ Fax 515-382-3885 www.mvtl.com

Sample Number: 13-M2502

Paul Koenig Azztec 8362 Tamarack Village #119-310 Woodbury MN 55125 Report Date: 8/15/13

Work Order #: 81-874

Date Collected: 8/ 1/13

Date Received: 8/ 9/13

Sample Description: CL3

Sample Site: Clarifier Sludge Cake

Animal Farm Sludge

PROXIMATE

ANALYTE		AS RECEIVED		DRY BASIS		
Total Moist Ash Total Sulfu Calorific Va		9.87 0.71	wt. % wt. % wt. % BTU/lb	10.03 0.72 12224	wt. % wt. % BTU/lb	6,795kcal/kg 28.4 Mj/kg

Winner First
Place Water
Award at Global
Cleantech Open
Forum 2015

USA Patent & PCT

Advantages

- Real time mitigation of sludge (current dewatering & dry bed systems could take up to weeks)
- Lower moisture content at <20% (post dry bed process at >30%, post centrifuge process >70%)
- Flexible in-take point(s) (raw effluent, primary clarifier, secondary clarifier, digested, aerated, dewatered, dry bed and/or discharge)
- Zero discharge (close loop process flow)
- Clean water return for reuse as process water (up to 95% recovery)
- USEPA Vector A bio-solids at less than 20% moisture (available for internal boiler)
- No heavy investments (DBOO model requiring no capex from client based on processing fees/ton)
- Substantial reduction on current sludge mitigation cost
- Reduction in raw feed cost
- Reduction in raw water cost
- Reduction in carbon footprint
- Guarantee on discharge/raw water parameters (depending on influent and discharge/raw water parameters)
- Small footprint
- Low power consumption and no polymer dosage

Moving Forward

- Understanding of current WWTP process flow and capacities
- Understanding of current sludge process flow and capacities
- Understanding of discharge standards and limitations
- Understanding of current operating cost for WWTP
- Understanding of current operating cost for sludge processing (including external cost)
- Understanding of power consumptions and chemicals usage
- Understanding of raw water (process water) standards or allowable limitations
- Understanding of boiler feed materials and cost
- Space allocations

THANK YOU

GGI TREATMENT PROCESS

WATER TREATMENT PROCESS
POME TREATMENT PROCESS
PAPER & PULP TREATMENT PROCESS
RUBBER GLOVE TREATMENT PROCESS
SLUDGE TREATMENT PROCESS

WATER TREATMENT PROCESS

WATER TREATMENT PROCESS

PRIMARY TREATMENT

SECONDARY TREATMENT

TERTIARY TREATMENT

SLUDGE TREATMENT

WATER TREATMENT PROCESS

GGI WATER TREATMENT PROCESS

POME TREATMENT PROCESS

PRIMARY TREATMENT

SECONDARY TREATMENT

TERTIARY TREATMENT

SLUDGE TREATMENT

Treatment Process

PRIMARY TREATMENT

SECONDARY TREATMENT

TERTIARY TREATMENT

SLUDGE **TREATMENT**

PAPER & PULP TREATMENT PROCESS

Typical Paper & Pulp Effluent & Sludge Treatment Process

GGI Paper & Pulp Effluent Treatment Process

GGI Paper & Pulp Sludge Treatment Process

RUBBER GLOVE TREATMENT PROCESS

Typical Effluent & Sludge Treatment Process

GGI Effluent Treatment Process

PRIMARY

TREATMENT

SECONDARY

TREATMENT

TERTIARY

SLUDGE TREATMENT

TREATMENT

GGI Sludge Treatment Process

PRIMARY

TREATMENT

SECONDARY

TREATMENT

TERTIARY TREATMENT

SLUDGE TREATMENT

SLUDGE TREATMENT PROCESS

TYPICAL SLUDGE TREATMENT PROCESS

GGI SLUDGE TREATMENT PROCESS (FIXED UNIT)

GGI SLUDGE TREATMENT PROCESS (MOBILE UNIT)

